

SYNERGIC COMBINATION OF HIGH PERFORMANCE FLAME RETARDANT BASED ON NANO-LAYERED HYBRID PARTICLES AS REAL ALTERNATIVE TO HALOGEN BASED FLAME RETARDANT ADDITIVES

The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under Grant Agreement n° 310187

NMP.2012.2.2-5 GA n° 310187

Index

- PHOENIX Fact Sheet what is PHOENIX?
- Background
- PHOENIX Concept
- Objectives
- Partners Involved
- Applications and markets
- More information.

PHOENIX Fact Sheet

- Title:
 - "Synergic combination of high performance flame retardant based on nano-layered hybrid particles as real alternative to halogen based flame retartant additives"
- Starting /ending (duration):
 - January 2013 / December 2016 (48 months)
- Funding:
 - This project is funded under the European Seventh Framework Programme Theme NMP.2012.2.2-5, Halogen free flame retardant materials
- Budget:
 - € 6,981,368.80 (EC Contribution € 5,099,936)
- Consortium:
 - 15 Partners from 8 countries

*** * * * *

Background

- Halogen Flame Retardants (HFR):
 - Low price
 - Give flame retardant properties without decreasing mechanical properties (do not decrease impact strength)
 - High efficiency (15% w/w)
 - Environmental problems:
 - Furans and dioxines are generated during combustion

Background

- Halogen-Free Flame Retardants (HFFR):
 - Non toxic and environmental friendly
 - High filler loadings are required (40-60%) to achieve good fire resistance:
 - Higher cost
 - Processing problems
 - Decrease of mechanical properties (low impact strenght)

Background

- Phoenix Flame Retardants:
 - Highly efficient halogen free flame retardants based on nanoparticles combination (Low % and price)
 - Environmental friendly
 - Good processability
 - Good mechanical properties

PHOENIX Concept

 Develop new halogen free FR nanostructured materials based on nanolayered structures produced using innovative green chemical routes and modified lignins.

Self-assembly technology → nanoplatellets structures

- Innovative processing routes to optimize nanocomposites properties:
 - New compounding techniques: Nanodirekt process
 - Ultrasounds mixing systems to improve nanoparticles dispersion during extrusion and injection moulding

PHOENIX Concept

• Simulation and modelling of compounding process in order to optimize nanoparticle dispersion

Objectives

- Produce sustainable FR nanoparticles: water-based production methods
- 2. Self assembly technology will be used to functionalize nano-layered FR particles and produced ordered nanostructures.
- 3. Develop FR additives from renewable sources based on lignins modified by boron and phosphorous reagents to improve RF properties.
- 4. Reduction of FR content up to 15%w/w
- 5. Nanoparticles dispersion improvement during compounding applaying NanoDirekt process

PHOENIX project - FP7 - GA 310187

- 6. Develop a new module for LUDOVIC compounding simulation software in order to optimize FR nanocomposites dispersion
- 7. New FR compounds with good processability employing conventional extrusion and injection moulding machines or assisted by ultrasound devices to improve nanoparticle dispersion
- 8. Competitive cost: less than 20% increase over halogen FR.
- 9. Study co-extrusion and co-injection processes to decrease the FR content and achieve good mechanical properties. (functional layer + structural layer)

Objectives

- 10. Develop stable epoxy pre-pregs containing FR nanoparticles
- 11. Increase in a 10% the mechanical and thermal properties of the new FR compounds compared to halogen FR materials
- 12. Fully recyclable compounds (up to 30% will be added to the virgin polymer decreasing mechanical properties less than 10%)
- 13. Develop a methodology for a quick in-line test to evaluate FR resistance
- 14. Positive environmental impact
- 15. Materials selection will take into account technical, performance, health, environmental and economic factors

Partners

- 1. Electrical / Electronic Devices (E&E)
- 2. Low-voltage wires
- 3. Household appliances

electric motor connectors

Cable industry

White goods

For more information

- www.phoenix-eu-project.eu:
 - Project objectives
 - Partners
 - News Dissemination activities
 - Technological watch (technical information related with halogen, flame, fire, resistance, nanomaterials)
- Project coordinator:

Technical contact	Administrative contact
Begoña Galindo	Maria-José Moretó
bgalindo@aimplas.es	mjmoreto@aimplas.es
+34 96 136 60 40 (ext 193)	+34 96 136 60 40 (ext 128)

SYNERGIC COMBINATION OF HIGH PERFORMANCE FLAME RETARDANT BASED ON NANO-LAYERED HYBRID PARTICLES AS REAL ALTERNATIVE TO HALOGEN BASED FLAME RETARDANT ADDITIVES

The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under Grant Agreement n° 310187

NMP.2012.2.2-5 GA n° 310187

